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Abstract 

We used interferometry to measure the electrostrictive increase of the density of sulfur 

hexaflouride (SF6) near its critical point. The results at three temperatures (Tc + 5.0 mK, Tc + 
10.0 mK, Tc + 30.0 mK with Tc = 3 19 K) agree with a calculation based on the Clausius-Mossotti 

relation and the restricted cubic model equation of state. To measure electrostriction, an 

inhomogeneous electric field (5 26 kV/cm) was applied to the SF6 sample by charging a fine wire 

that passed through it. These measurements were performed in microgravity so that the small 

electrostrictive density changes (5 3.5 % in this work) would not be masked by the larger 

stratification of the fluid's density induced by the Earth's gravity. The predicted shifts of the 

critical temperature and density resulting from the electric field were too small to detect. 
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I. INTRODUCTION 

Most experimental studies of electric field effects near critical points have been concerned 

with measurements of the dielectric 

strength studies of binary liquid mixtures near consolute p o i r d 8 .  Such mixtures are easily 

handled; however, they are not perfect insulators. Thus, applying an electric field inevitably 

leads to ohmic heating which, in turn, prevents the study of electric field effects in a mixture at 

equilibrium. In contrast, the present study is concerned with the single-component non- 

(at low field strengths), and moderate field 

conducting fluid, sulfur hexafluoride (sF6), near its liquid-vapor critical point. We measured the 

electric-field-induced increase of the density of SFs in equilibrium at the temperatures Tc + 5.0 

mK, Tc + 10.0 mK, and Tc + 30.0 mK, where Tc is the critical temperature. The measured density 

increase was in quantitative agreement with theory. 

The density increase was an example of “electrostriction,” i.e. the deformation of a fluid or 

solid in the presence of an electric field. Near a critical point, electrostriction becomes more 

pronounced because of the diverging isothermal compressibility. The present work extends the 

electrostriction measurements of Hakim and Higham’ to highly-compressible near-critical fluids, 

where the compressibility is seven orders of magnitude higher than the liquids studied in 

reference 9. A preliminary analysis of our electrostriction data was reported in a previous 

publication, together with observations of the electric field-induced flows in the sF6 fluid in a 

microgravity environment4. 

In the absence of free charges, and neglecting the effect of gravity, the force acting on a unit 

volume element of dielectric in an electric field of strength E is” 

where 

dielectric constant is related to density through the Clausius-Mossotti relation, which states that 

the ratio (K  - 1 )  I P(K+ 2) is a constant for any given dielectric. (Although the Clausius-Mossotti 

relation is only approximately valid for fluids, it is found to be sufficiently accurate for non-polar 

is the vacuum permittivity, K the dielectric constant, and p is the density. For fluids, the 
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fluids at the density encountered near a critical point.) Thus, density gradients will be affected by 

the electric field, with regions of higher density being pulled into the regions of stronger electric 

field, leading to dielectrophoretic flow. The electric field force on a dielectric is usually small in 

comparison to gravity. However, in a microgravity environment, an electric field can be used to 

pump and confine liquids12 and it can induce convective flowsI3. Voronel and Giterman14 

recognized the possibility of using strong electric fields to counter the gravity-induced 

stratification that occurs near the critical point as early as 1968. Fields of tens of kilovolts/cm are 

required for samples that are a few millimeters high. 

We are interested in solving for the density change in the fluid due to an applied electric 

field. In equilibrium, the electric volume force in the fluid is balanced by a pressure gradient such 

that fE = V p  . The electric volume force can be re-written as a single term, 

2 &  vP=--EoPv[E 1 d p )  
2 

Upon integrating, we find the desired relation between pressure and electric field: 

For an incompressible fluid, we immediately find that the electrostrictive pressure is given by 

where we have used the Clausius-Mossotti relation, and K =  1.28 for s& at the critical density'32. 

When a compressible fluid, such as sF6 near the critical point, is subjected to an electric field, 

there is an accompanying change of its density that can be calculated from Eq. (3) and the fluid's 

equation of state. In the limits of a linear response and isothermal conditions, the density change 

due to an electric field is 
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- = B T P E  AP 
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where fi  is the isothermal compressibility. Of course, the density change occurs only if the 

portion of the fluid subjected to the field is in contact with a sufficiently large reservoir of fluid 

outside the electric field. 

Because of the relatively large compressibility encountered within a few millikelvin of a 

critical point, even a modest electric field produces an easily measured density change in a non- 

polar fluid. For example, at Tc + 5.0 mK the isothermal compressibility of SF6 is 4.1x1O4/PC 

where P, is the critical pressure (3.76 MPa). An electric field of strength 10 kV/cm produces an 

electrostrictive pressure p~ = 3.6~1 0-7 P,. The corresponding density increase is approximately 

1.5 %, a change that was easily measured using interferometric techniques. 

Earth-based measurements of the electrostriction effect near the liquid-vapor critical point 

are completely masked by gravity effects. The scale of gravity effects can be compared to 

electrostriction by noting that the gravitationally caused pressure gradient in SF6 at its critical 

density (730 kg/m3) is 2 . 9 ~ 1 0 - ~ P ~  per millimeter of height. Thus, the gravitational pressure 

difference across an SF6 sample only 0.12 mm high equals the electrostrictive pressure produced 

by an electric field of 10 kV/cm. Furthermore, in the Earth's gravity, stratification of the near- 

critical SF6 leads to comparatively large dielectrophoretic forces due to the density gradient. 

Thus, applying an electric field to a stratified, near-critical fluid will cause flow. In this situation, 

it is virtually impossible to detect the more subtle electrostriction effect in the presence of the 

larger gravity-caused stratification and dielectrophoretic flow. By performing the experiment in a 

microgravity environment, we were able to avoid density stratification in the sample and thus 

make an accurate measurement of the electrostriction effect. 

11. EXPERIMENT APPARATUS 

The experiment was carried out using the Critical Point FacilityI5 (CPF) which flew on the 

Second International Microgravity Laboratory (IML-2) mission during the STS-65 Mission of the 

Space Shuttle Columbia during July 1994. The CPF was a multi-user instrument designed and 

built in Europe and operated by the European Space Agency. Five separate experiments were 
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conducted sequentially in the CPF during the IML-2 mission. To start each experiment, mission 

specialists (astronauts) installed the experiment’s unique sample cell unit (SCU) in the CPF. The 

CPF provided temperature control and it contained optical components, including light sources, 

shutters, and video and 35 mm cameras. As described in greater detail in another publication’6, 

the CPF thermostat stabilized the temperature of the SCU so that temperature excursions were 

less than 0.1 mK during intervals of many hours. The temperature gradients across the SCU 

were less than 100 jK cm-’ . 
The heart of the SCU used in this work was a coin-shaped volume of sF6 that was 

studied by interferometry. Schematic diagrams of our interferometer cell are shown in Figure 1. 

The SF6 was confined by two flat quartz windows and by a washer-shaped stainless-steel spacer. 

The inside diameter of the spacer was 12 mm, and its thickness was 2 mm. Approximately one 

quarter of this confined volume was occupied by a 1 mm-thick, semicircular, quartz “button” 

attached to one window. The button divided the cell into two parts; the part near the fill tube had 

a 1 mm fluid thickness and the other part had a 2 mm fluid thickness. 

The interferometer sample cell comprised one leg of a Twyman-Green interferometer. A 

multi-layer dielectric mirror coated the inner surface (in contact with the fluid) of one of the 

windows. Both surfaces of the other window had anti-reflection coatings. Interferograms were 

recorded once every six seconds by the CCD camera in CPF. The digital image was sent to the 

ground, recorded, and displayed. The 6-bit resolution of the CCD provided 64 gray levels and a 

spatial resolution of 35 p at the focal plane. Unfortunately, the interferometer optics were not 

focused at the sample cell. As described below, the effects of poor focus were accounted for 

when the images were compared with theory. 

In addition to the optical coatings mentioned, both inner surfaces of the windows were 

coated with a conductive, transparent, indium-tin-oxide film. The conductive films made 

electrical contact to the spacer via the gold O-rings that were used to seal the cell. The films on 

the inner window surfaces and the spacer were kept at ground potential throughout the 

experiment. 

A 0.125 mm diameter wire passed through the 2 mm thick section of the SFg parallel to the 

edge of the quartz button and 1.8 mm away from its edge. The wire had been spot welded to 
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electrical feedthroughs, which, in turn, were epoxied into the spacer. The wire was charged to 

500 V to apply an inhomogeneous electric field to the sample. 

As described in Reference 16, the sample cell was filled to within 0.3% of the critical 

density with 99.999% pure SF6. 

During the experiment, commands were sent from the ground to CPF to turn the voltage on 

and off, to take photographic and CCD images of the interferograms, and to change the set-point 

temperature of the thermostat. 

Seventy five minutes after starting the experiment, CPF brought the SCU to T, + 1 K and 

maintained it there for 30 minutes. During this interval, the SF6 equilibrated, attaining a uniform 

temperature and density. Then the SCU was taken through Tc using a sequence of ramps 

designed to minimize the density inhomogeneities in the sF6. First, the temperature was ramped 

down to T, + 30 mK in 20 minutes and it was held there for 5 minutes. Then, the temperature 

was ramped down to Tc + 3 mK in 40 minutes and held there for 10 minutes. Finally, the 

temperature was ramped through Tc at the rate -5x1 0-7 Ws while the video images acquired 

every six seconds were recorded. A dramatic increase in turbidity throughout the SF6 sample 

was bracketed by two images. This was identified as the onset of spinodal decomposition and it 

was assumed to define Tc with an uncertainty of less than 0.1 mK relative to the CPF 

thermometers. (All uncertainties stated are a single standard uncertainty, Le. the coverage factor 

k-1 .) The microgravity value of Tc agreed with the value determined on Earth prior to this 

measurement to within the latter’s larger uncertainty, 0.3 mK. All subsequent temperature 

measurements were made relative to the microgravity value of Tc with uncertainties that were 

less than 0.1 mK. 

111. ELECTROSTRICTION FRINGE PATTERNS 

Changes in the fluid density distribution were measured by monitoring changes in the 

interferometric fringe pattern, which sensed changes in the optical path length. The nominal 

optical path length of the laser light in the fluid was Nil = 2Zn. Here, N is the number of 

wavelengths required to pass twice through the fluid, h = 633 nm was the wavelength of the 

light in vacuum, I = 2 mm was the thickness of the fluid, and n = 1.092 is the index of refraction 
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of the sF6 at the critical densityI7. When the density of the sF6 changed, the optical path length 

changed. The resulting fringe shift, or change in fringe order, was 

where 6p was the density change and 

n'= p dn / dp = (n2  - l)(n* + 2) / 6n (7) 

is obtained from the Lorentz-Lorenz relation connecting the density to index of refraction. Thus, 

a relative density change of 0.01 % in the 2 mm thick section of our fluid sample would produce a 

fringe shift of AiV = 0.056 fringes, which was approximately twice the limit of our resolution. 

The fringe pattern displayed in Figure 2(a) was obtained under conditions where the 

density was homogeneous (Tc + 1 K with the electric field off). This fringe pattern was 

determined by the tilt of the reference mirror of the interferometer together with distortions 

resulting from the optics. The bending of the fringes around the edges of the cell is due to bowing 

in the quartz windows, which results from the forces needed to seal the cell. A discontinuity in 

the fringe pattern is visible across the diameter of the cell. This resulted from the semi-circular 

quartz button, which changes the optical path length relative to the other half of the cell. 

Figure 2(b-d) shows the equilibrium fringe patterns when the wire was charged to a 

potential of 500 V at Tc + 30.0 mK, T, + 10.0 mK, and Tc + 5.0 rnK, respectively. The fringes 

near the wire were bent by the density increase near the wire due to electrostriction. Upon 

applying the electric field, we did not immediately observe the density change given by Eq. (5). 

The full density change density given by Eq. (5) is an isothermal calculation. Turning on the 

electric field heats the fluid a small amount due to the electrocaloric effect'*. The excess heat 

gradually diffuses out of the fluid, the density change gradually builds up, and the fluid returns to 

the original temperature after approximately a thermal diffusion time constant z = Z 2  / n2D, . 

Because the thermal diffusivity of the fluid D, approaches zero as the critical point is approached, 

it is necessary to wait increasingly longer times as the temperature approaches Tc. The fringe 

patterns shown in Figs. 2(b-d) were obtained after leaving the 500 V potential on for 3 , 6 ,  and 14 
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hours respectively. The immediate, or adiabatic, density change is predicted by substituting the 

adiabatic compressibility & = (Cp /Cv )-' for the isothermal compressibility in Eq. (5). The 

adiabatic density change is much smaller than the isothermal change because Cp /Cv, the ratio of 

the specific heat at constant pressure to that at constant volume, diverges strongly near the critical 

point. Indeed, the adiabatic density change was too small for us to detect close to T,; however, 

the isothermal density change was easily measured. 

IV. THEORY 

The electric field produced by a charged wire passing halfway between two grounded 

parallel plates separated by a distance I can be calculated by solving Laplace's equation with 

appropriate boundary conditions. (This model for the cell neglects the small, position-dependent 

variations of the dielectric constant resulting from electrostriction.) Choosing the coordinate 

system such that the x-axis is perpendicular to the wire and parallel to the grounded window 

surfaces, and the z-axis is perpendicular to the windows, the result for the square of the electric 

field is 

E 2 = -bosh( c 2 v 2  ~ ] -  cos( ?]I1. 21 2&; 

where V is the voltage applied to the wire, and C, the capacitance per unit length of the wire of 

radius a, is given by C = 27-c~~ [1n(21/m)r1 . In our sample cell geometry, the electric field 

produced at the surface of the wire by a 500 V potential is 26 kV/cm. The electric field falls off 

rapidly with distance because of the screening by the grounded windows (an essential feature of 

the cell fabrication), and becomes 1 kV/cm at x = 1 mm from the wire. The effect of the stepped 

window geometry on the electric field was evaluated using a Schwartz-Christoffel 

transformation''. Because the field is weak near the step edge and the electrostriction effect is 

proportional to E2, the effect of the step edge on our results is negligible. 
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With the wire charged to a 500 V potential, the electrostrictive pressure p~ at the surface of 

the wire is 2 . 4 ~  1 0-6 P,. Although this is a relatively small pressure increase, the compressibility 

is large enough near the critical point such that the electrostrictive pressure induces a nonlinear 

response in the compressibility. In the linear regime, the isothermal compressibility 

& = (l/p)(ap/aP)~ diverges on the critical isochore near the critical point as h = 13-'.24 / Pc 

where t = (T - T,)/T, is the reduced temperature, and r = 0.0459 for SF6 in the restricted cubic 

model2'. Close to the wire, and within about 20 mK of the critical temperature, Eq. (5 )  is no 

longer a good representation of the density change, because & can not be approximated by a 

temperature-dependent constant, Le. independent of p ~ .  Thus, it is necessary to use Eq. (3) 

together with the equation of state of SF6 to numerically compute the density increase due to the 

electrostrictive pressure. Figure 3 shows the density change as a function of pressure, normalized 

to values at the critical point, as calculated from the restricted cubic model parameters found in 

Ref. 20. 

The change in optical path length of a ray passing through the fluid is calculated by 

integrating the density increase along the light path and using the Lorentz-Lorenz relation to 

relate the change in fluid density to a change in index of refraction. The change in fringe order at 

a lateral distance x from the wire is then given by 

In the linear regime, the compressibility is independent of position and the integral can be 

evaluated analytically. The result is 

AN(x) = n'PT (K-lxK+2)c 2 2  v csch(2mll). 
12Ah&O 

The predictions of Eq. (9) and Eq. (10) agree very well at Tc + 30.0 mK because the pressure and 

density are in the linear regime. However, at temperatures close to Tc and close to the wire, it is 

necessary to use the general form given by Eq. (9), and compute the integral numerically. To 
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evaluate Eq. (9), we first calculate the right hand side of Eq. (3) at a given location (x,z). The 

result is compared with the numerical computation of the integral of dplp at the temperature of 

interest, which gives a matching result at some value of Ap. This value of Ap is then used in 

evaluating Eq. (9). Figure 4 shows the predicted fringe shift as a function of distance from the 

wire, using both the analytic expression of Eq. (10) and the numerical analysis based on Eqs. (3) 

and (9). As expected, the two results agree when the fluid responds linearly to the electrostrictive 

pressure. 

Finally, we must consider the possibility of a shift in the critical temperature ATc@) and 

density Apc(E) due to the electric field. Landau and Lifshitz'* show that an electric field changes 

the free energy of the fluid, resulting in a shift of the critical point. In Appendix A, we evaluate 

the shifts in the critical temperature and the critical density near the surface of the wire, where the 

electric field is greatest. The results are ATc(26 kV/cm) = 0.2 mK and Apc(26 kV/cm) = 

6 . 9 ~ 1 0 ~  pc. The very small shift in the critical density could not be detected in this experiment; 

the small shift in the critical temperature might have been barely detectable if it were not 

confined to a very small volume in the immediate vicinity of the wire. The interference patterns 

that we analyzed resulted from optical paths that integrated the density through the full thickness 

of the cell. Thus, the effects of the electric field on the critical point were too small to influence 

the present experiment. 

V. DATA ANALYSIS 

To analyze the fringe patterns, the original digital images were rotated using commercial 

software so that the wire was parallel to pixel columns. A subset of the original images, centered 

on the wire and occupying a region approximately 3 mm wide (84 pixels) by 7 mm tall 

(175 pixels), was used to analyze the fringe shift. An identical section from each of the 

interferograms shown in Fig. 2 was used in the analysis. The task is to measure the fringe shift 

AiV(x) as a function of distance from the wire. Because of the periodic nature of the fringe pattern 

and the symmetry of the problem, the image analysis is well suited to Fourier analysis. 

The subset of each image is represented by a matrix of intensity data, Z(x, y). Each column 

of pixels, parallel to the wire and at position XO, is thus represented by an array Z(x0, y). We then 
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take the Fourier transform of I(x0, y), which yields magnitude and phase data at a range of spatial 

frequencies. Because the intensity pattern is nearly periodic along a 

magnitude data exhibit a strong peak at the spatial frequency of the fringe pattern. The phase data 

at that frequency of interest determines the phase of the fringe pattern to within an arbitrary 

constant. The process is repeated for each of the 84 columns of intensity data, and again for each 

temperature of interest. A density increase near the wire due to electrostriction produces a change 

in the phase of the fringe pattern, but the spatial frequency of the fringe pattern parallel to the 

lumn of pixels, the 

wire remains the same. 

Figure 5 shows phase data at Tc + 1 K and Tc + 10.0 mK that were computed from a 

Fourier analysis of images shown in Fig. 2. The Fourier analysis accurately reproduces the peak 

in the phase shift near pixel 43 where the wire was imaged. However, far from the wire, where 

the electric field and the electrostrictive density changes were always small, the phases for the 

two temperatures plotted in Fig. 5 do not coincide. Thus, the background fringe pattern upon 

which the peak is superimposed appears to have temperature dependence. An analysis of other 

images at Tc + 1 K and Tc + 3 K, spanning an 80 hour period, indicated that the background 

fringe pattern was changing slowly with time and had a slight temperature dependence. Such a 

change in the background fringe pattern might have been caused by creeping motion of one or 

more of the optical components within CPF. If the sample cell had leaked, there would have 

been a drift in the background fringe pattern in the direction opposite to that which was observed. 

We expected the fringe shift due to electrostriction to be symmetrical on both sides of the 

wire. However, the typical fringe pattern had a small (< 0.2 fringe) asymmetry. The asymmetry 

was consistent with a slight rotation of the background fringe pattern and it was detected even far 

from T,, for example, upon comparing the phase data at T, +1 K and Tc + 3 K. The rotation of 

the fringe pattern was probably caused by movement of the same optical component that 

produced the translation of the background fringe pattern displayed in Fig. 5. 

The final data analysis eliminated the effect of the rotation by averaging data from the 

two sides of the wire. The analysis also compensated for the time-dependent phase drift of the 

fringe patterns by subtracting the phase data at Tc + 1 K from all the other sets of phase data and 

adding a constant to the results, where the constant was chosen to yield zero phase shift far from 

the wire. 

11 
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Because the CPF interferometer optics were not focused at the sample cell, we found that 

it was also necessary to account for the effect of refraction2’. A ray exiting the fluid in the 

vicinity of the wire is bent away from the normal due to refraction in the fluid, as shown 

schematically in Fig. 6. The interference pattern recorded by the CCD camera is thus dependent 

on the position of the imaging plane. If the camera were focused on the sample cell, no 

correction would be necessary. Using detailed data about the interferometer optical trainn we 

calculated the location of the imaging plane. We find that the distance from the sample cell to the 

imaging plane is a = 6.6 cm. 

The effect of refraction on the recorded interferograms is twofold. First, a refracted ray is 

displaced from its “true” position, i.e, the position of interest where it exits the sample cell. The 

refracted ray has the effect of carrying phase information from, for example, the lateral 

coordinate xo < 0 where it exits the sample cell to a new position xo’ = xo + zotan6 at the imaging 

plane, where 8 is the angle the refracted ray subtends with the normal. For example, a ray passing 

dose to the left side of the wire can be refracted to the right side of the wire at the imaging plane. 

In fact, a close inspection of the interferograms near Tc in Fig. 2 reveals a faint extension of the 

fringe pattern from one side of the wire to the other side. The subtle effect is more readily 

observed when the interferogram is viewed at a grazing angle. A large magnified image of the 

interferograms was used to manually trace the extended fringe pattern, which originated from the 

opposite side of the wire. Data from manually traced fringes on both sides of the wire were 

averaged together to eliminate the effect of rotation in the background fringe pattern, as 

discussed previously. Fringe shift data from the manually traced fringes was appended to the 

Fourier transform data, and the two methods of analysis were found to yield a smooth match of 

the data in the vicinity of the wire. To summarize, the fringes start on one side of the wire and 

continue on the opposite side of the wire as a faint extension because of refraction. The Fourier 

analysis was used on the originating side; the hand-traced fringe analysis was used on the faint 

extensions. 

A second consequence of refraction is the addition of a path-length error. A ray that exits 

the fluid at angle 8 travels an extra distance relative to a ray that is not refracted. The additional 

path-length traveled by the refracted ray increases the phase from the true value by the amount 

zonf?/il. The angle 8 the refracted ray subtends with the normal is calculated from the expression 

12 
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sin 8 = ( A  / 2n)(drp / dr) where cp is the phase of the wavefront at the plane zo = 0 where the 

wavefront exits the fluid. The phase of the wavefront is calculated from Eq. 9, noting that a 

change in fringe order AN = 1 corresponds to a phase change Arp = 2n. 

Figure 7 shows a comparison between theory and the measured fringe shift due to 

electrostriction, as a function of distance from the wire. Data points at 5.0 mK, 10.0 mK, and 

30.0 mK above T, are from an analysis of the interferograms in Fig. 2. The solid line is the 

theoretical fringe shift, which accounts for the non-linearity in the compressibility and the effect 

of refraction. The agreement between theory and experiment is excellent; the differences are 

within the noise of the fringe resolution which is of order 0.03 fringes in the vicinity of the wire. 

At Tc + 5.0 mK, the fluid density ranges from p, far from the wire, to 1 .035pc close to the wire 

due to the electrostriction effect. Data points for x > 0 are from the Fourier transform analysis of 

the fringe patterns, and x < 0 data is from the analysis of hand-traced fringes. The only adjustable 

parameter used in the data analysis is the small phase shift added to the Fourier transform data to 

force the fringe shift to zero far from the wire. As discussed previously, this offset is independent 

of position and is due to a small drift in the background fringe pattern. 

The dashed line in Fig. 7 is the fringe shift calculated from Eq. (9), which accounts for 

the non-linearity in the compressibility but does not include the effect of refraction. In effect, 

refraction causes a one-to-one mapping of points in the dashed line to points in the solid line. By 

comparison, we find that refraction has a major influence on the fringe pattern close to the wire. 

As predicted, rays that exit the fluid close to wire are refracted to the other side of the wire at the 

imaging plane. Once again, we point out that accounting for refraction would not be necessary if 

the optics were focused on the sample cell. 

13 
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VI. CONCLUSION 

We have measured the electrostriction effect surrounding a charged wire in a near-critical 

sample of sF6, at temperatures 5.0 mK, 10.0 mK, and 30.0 mK above Tc. As theory predicts, the 

electrostriction effect diverges as the compressibility diverges near the critical point. By 

performing the experiment in a microgravity environment, we were able to avoid gravitational 

stratification of the fluid density. The electrostrictive density increase was measured by analyzing 

interferometric fringe patterns from the fluid sample. Because of the low thermal diffusivity of 

the fluid, the density increase is slow to develop. In the limit of a linear response and neglecting 

the effect of refraction, the fringe shift can be solved analytically and is given by Eq. (1 0). Closer 

to the critical point, and near the wire where the electric field is high, it is necessary to account 

for the nonlinear response of the fluid compressibility by numerically evaluating the equation of 

state and computing the integrals in Eq’s. (3) and (9). Using the restricted cubic model equation 

of state for SF6 and accounting for the effect of refraction on the out-of-focus interferometric 

images, we obtain quantitative agreement between electrostriction theory and data obtained in a 

microgravity environment. 
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APPENDIX A: SHIFT OF THE CRITICAL POINT DUE TO AN ELECTRIC FIELD 

We estimate the effect of an electric field on the critical temperature and critical density 

and show that it had a negligible effect on the present study of the electrostriction effect near the 

critical point. We follow Landau and Lifshitz18 who considered the free energy of a dielectric in 

the presence of an electric field and showed that the chemical potentia1 of the fluid is 
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. . r . . . m .  . I  . , - .  where is the chemical potential in the absence of 

existence and stability of the critical point become 

an electric neicl. 1 ne conditions ror tne 

0 .  

In an earlier edition of their book, Landau and LifshitzI8 calculated the shift of critical 

temperature AT, by considering a Taylor series expansion of (dP/dp) ,  around the critical point. 

However, their result contains the factor (a2P/dp  d T k  

point. The corresponding expression for the shift in critical density using a similar a n a l y ~ i s ' ~  also 

contains terms that go to zero at the critical point. 

, which goes to zero at the critical 
C * P c  

We have evaluated the shift of critical point by computing the thermodynamic derivatives 

in Eqs. (A2) and (A3) using the restricted cubic model equation of state. The derivative dpo/dp 

is inversely proportional to the isothermal compressibility, and is to be evaluated at the new 

critical point T,(E), p,(E). Assuming the shift in critical density is negligibly small (which is 

verified below), Eq. (A2) gives the shift in critical temperature as 

where y = 1.24, r = (k/a)(p :/P,) is the amplitude of a symmetrized isothermal compressibility, 

and, for SF6, k = 1.01 and a = 22.0 are the two, system-dependent scale factors that appear in the 
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restricted cubic model. In the mean-field theory, y =1, and Eq. (A4) reduces to the expression 

found by O n ~ k i ~ ~ .  

The shift in the critical density can be calculated from Eq. (A3). Using the restricted cubic 

model expressions found in reference 20, the condition specified by Eq. (A3) becomes 

and it is to be evaluated at the new critical temperature and density. The parametric variables r 

and 8 are the parametric variables used to define the temperature and density in the restricted 

cubic model coupled equations, and b2 and q(8) are also defined in the model and can be found in 

reference 12. To solve Eq. (A5) for the shift in critical density, we first note that the reduced 

temperature is given by ATJT,. Then, the value of the parameter 8 is found which satisfies Eq. 

(A5). Once r and 8 are known, the shift in critical density &/p, is easily calculated. 

We evaluated the derivatives (a"lcIap")T using the Clausius-Mossotti relation, which 

states that the ratio ( K  - 1) / P(K + 2 )  is a constant for any given dielectric. Thus, taking 

p 0~ (K-l)/(K+ 2 )  we find 

and 

3 a 3 K  2 
P -- - -(K - 1 y ( K  4- 2). 

ap3 9 

When charged to a 500 V potential, the electric field at the surface of the wire is 

26 kV/cm and the corresponding shift in critical temperature of SF6 calculated from Eq. (A4) is 

AT, = 0.2 mK. This shift is small in comparison with our closest approach to T,; namely, 

T, + 5.0 mK and it had a negligible effect on our results. We  also note that the shift decreased 

rapidly with the distance from the wire. 

16 
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At 500 V, the shift in critical density calculated from Eq. (AS) is Ap = 6.9~10-~p, at the 

wire. This was far too small for us to detect. 

17 
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Figure Captions 

FIG. 1 .  Schematic diagrams of the sample cell. The fluid-filled volume is 12 mm in diameter. 

Half of this region is 2 mm thick; the other half is 1 mm thick. A fine wire passing through the 

fluid was charged to 500 V to generate the electric field. 

FIG 2. Interferograms of the SFg fluid in a low gravity environment. The bending of the fringes 

near the wire signifies the density increase due to the electrostriction effect. (a) Tc + 1 K with no 

electric field. (b) Tc + 30.0 mK after 3 hr at 500 V. (c) Tc + 10.0 mK after 6 hr at 500 V. (d) 

Tc + 5.0 mK after 14 hr at 500 V. 

FIG 3. The relative density as a function of the relative pressure of SF6. The calculated curves 

used the restricted cubic model. When the wire was charged to 500 V, the electrostrictive 

pressure at the surface of the wire was 2 . 4 ~ 1 0 - ~  Pc, as indicated by the dashed line. 

FIG. 4. Predicted electrostrictive fringe shifts as a function of distance from the center of the 

wire. The dashed curves resulted from using the linear approximation to the equation of state 

Eq. (10). The solid curves are the more accurate, numerical results using the restricted cubic 

model equation of state and Eqs. (3) and (9). 

FIG. 5. Phase data at Tc + 1 .O K and Tc + 10.0 mK from a Fourier analysis of the interferograms 

shown in Figure 2. 

FIG. 6. Schematic showing the effect of refraction. Rays passing close to the wire are refracted to 

the other side of the wire at the image plane B. In addition to being displaced from its original x 

coordinate, the refracted ray travels an extra distance, thus producing an extra phase shift at the 

imaging plane. 

FIG 7. Measured electrostriction fringe shift in a SF6 sample as a function of distance x from the 

center of the wire: Tc + 5.0 mK ( 0 ); Tc + 10.0 rnK (0 ) ;  and Tc + 30.0 mK (0). The solid lines 

19 
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are the theoretical fringe shifts including the nonlinear response of the fluid and the effects of 

refraction. The dashed curves include nonlinearity but neglect the effects of refraction. 

20 
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